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Abstract. Recent measurements for expanded Hg, Cs and Rb have shown that the liquid–
vapour coexistence curves for these metals do not obey the ‘law of rectilinear diameters’. It is
shown here that a two-state Van der Waals equation with a density-dependent cohesive energy
will lead to compositional fluctuations that result in a breakdown of the ‘law’. Calculations
predict that Hg and the alkali metals will exhibit similar behaviour near the critical point.
However, in the case of Hg the 6p–6s band-gap closure, which occurs at higher than critical
densities, leads to an anomalous behaviour not observed in the alkali metals. The influence of
this transition on the rectilinear behaviour is treated by introducing a further modification of the
two-state model.

1. Introduction

The law of rectilinear diameters, formulated over a hundred years ago, states that as
the critical temperatureTc is approached along the liquid–vapour coexistence curve, the
rectilinear diameter (the mean density of a liquid (ρl) and its equilibrium vapour (ρv)) is
observed to deviate from the critical densityρc as a linear function of the temperatureT .
This is often expressed by the relationship:

ρd − 1 = A1(Tc − T )/Tc + · · ·
where ρd = (ρl + ρv)/2ρc. Terms of higher order inT are non-linear and represent a
breakdown of the law [1]. This law, which is more correctly an empirical rule, was based
on experimental data for simple insulating fluids. The possibility that the law could be
violated has been anticipated in several theoretical papers [2–5].

Recently, measurements made for Hg [6], Rb and Cs [7] were found to exhibit a
noticeably nonlinear behaviour. For these metals the two branches of the coexistence curve
are strongly asymmetric and the law of rectilinear diameters breaks down. In the case of
Cs and Rb the diameter anomalies are remarkably large (see figure 1). The figure includes
also data for Hg with an accuracy comparable to that for the alkali metals. The following
points are noteworthy.

(i) On the whole the coexistence curve for Hg is much more symmetric than those for
Cs, Rb and Ar (see figure 2).

(ii) Starting from the critical temperature and with decreasing temperature,ρd for Hg
first increases (see figure 1) then decreases to a minimum value, which is a behaviour
opposite to that seen for molecular fluids and alkali metals.
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Figure 1. Rectilinear densities of rubidium and mercury plotted as functions of the reduced
temperature.

(iii) Far below the critical temperature, theρd for Hg regains a positive slope as observed
for insulating fluids and the alkali metals. This implies that there are two competing
variations ofρd with temperature which results in the observed minimum at intermediate
1T/Tc. The microscopic origin of the skewing toward higher densities far away from
Tc may be a consequence of the presence of the metal–nonmetal transformation and the
resultant change in the effective interparticle interaction and composition.

The equation of state, and the electrical and optical properties of these metals in the
region of the vapour–liquid transition have been examined in considerable detail [8]. All of
these elements show evidence for a nonmetal–metal transition over the two-phase region.
While no specific mechanism for the transition has been assigned to the alkali metals it is
known that caesium forms dimers and tetramers in the vapour and transforms to a nearly-
free-electron metal in the liquid at densities greater than about two times the critical density.
In the case of Hg it has been suggested that with increasing density there is a crossing of
the filled 6s band and the empty 6p band in the two-phase region and that this filling is
the origin of the nonmetal–metal transformation for Hg and the consequent change in the
effective interparticle interaction. In contrast to the case for metals, the interatomic forces
between insulating atoms, like xenon, are believed to be the same in the vapour and liquid,
thereby leading to the rectilinear law over a very large range.

The purpose of this study is to show that a two-state Van der Waals (VdW) model which
introduces compositional fluctuations will lead to an asymmetry in the calculated coexistence
curve. For the present study we focus on Hg as the prototypical VdW substance because
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it has a critical compressibility factor,Zc = PcVc/RTc = 0.39, which is quite close to
the VdW value of 0.375. Although the model parameters are tuned to mercury it will be
apparent that many of the critical features of Hg are common to the alkali metals, and that
any comparisons for properties in which they differ provide important new information.

Figure 2. A comparison ofT/Tc–ρ/ρc coexistence curves for argon, caesium and mercury.

The paper is organized in the following manner. In this introductory section (1) we
have presented a brief summary of the experimental results that need to be understood. To
achieve this, a modified VdW model is constructed in section 2. First, the standard VdW
model parameters are fitted to the critical temperature and density of Hg and it is shown
that this model obeys the law of rectilinear diameters. Then, a two-state VdW model
is constructed with parameters fitted to the same critical properties. This second model
predicts a breakdown of the rectilinear law which is due to compositional fluctuations. The
predictions show the same qualitative behaviour for Hg and the alkali metals near the critical
point. However, in the case of Hg a nonmetal–metal transition which occurs at a density
higher than the critical density leads to an anomalous behaviour not observed for the alkali
metals. The influence of this transition on the rectilinear behaviour is treated in section 3
by introducing a further modification of the two-state model. The concluding section (4)
summarizes our results.

2. The Van der Waals model

The Van der Waals (VdW) model is possibly the best understood model of the liquid–
vapour critical region. Although not quantitatively accurate it is widely used for qualitative
investigations and as the starting point for more advanced quantitative models, such as
hard-sphere perturbation theory. The derivation of the VdW model is well known. Its
simplicity makes it valuable for understanding the qualitative behaviour of the vapour–
liquid coexistence curve.
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2.1. The one-component VdW model

For clarity of presentation we provide the expression for the Helmholtz free energy (A) per
mole of a one-component fluid [9]:

A/RT = − ln((V − b)/33) − a/V RT (1)

and pressure:

P = RT/(V − b) − a/V 2 (2)

where R is the gas constant,b is the excluded molar volume due to the finite size of
molecules,a is a constant determined by the attractive forces between atoms and3 is
the thermal de Broglie wavelength. Isotherms calculated using this model show a sinuous
loop corresponding to the separation of the fluid into liquid and vapour below a critical
temperature, and above whichP increases continuously asV decreases. At the critical
temperature,∂P/∂V = ∂2P/∂V 2 = 0. On calculating these derivatives one has, with the
original equation, three equations from which to determine the model constantsa andb.

The critical temperature, pressure and molar volume of Hg are, respectively, 1751 K,
1673 bar and 34.6 cm3 mol−1. The VdW parametersa and b obtained by fitting to the
critical temperature and volume area = 5.67 l2 bar andb = 11.53 cm3 mol−1. This leads to
a predictedPc = 1579 bar, in reasonable agreement with the experimental value. The lower
predicted value reflects the lower Van der Waals critical compressibility factor. The vapour–
liquid equilibrium may be calculated by equating the Gibbs free energies (G = A + PV )
and pressure of the coexisting phases at constant temperature.

2.2. The two-state VdW model

Consider a VdW model for a system of two states or two components in a reacting fluid
mixture. For the moment we leave the specific nature of the states or components undefined.
These may be atoms in different thermally excited states, or a mixture of monomers and
dimers, etc or clusters of differing sizes. We write the Helmholtz free energy as

A = −RT ln((V − b)/33) − [(1 − x)2a1 + 2x(1 − x)a12 + x2a2]/V + xE0 − T Smix. (3)

a1 anda2 are the energy parameters of the pure states anda12 characterizes the mixture.x
is the fraction of the state 2 species and the entropy of mixing is

Smix/R = −(1 − x) ln(1 − x) − x ln x.

E0 is a constant which sets the difference in energy of the two states at infinitely
large volumes. Takinga12 as the simple arithmetic mean of the pure components,
a12 = (a1 + a2)/2, the expression for the Helmholtz free energy becomes

A = −RT ln((V − b)/33) − [(1 − x)a1 + xa2]/V + xE0 − T Smix. (4)

This equation is the same as that for ideal mixing. By varying the definition ofa12 one
can obtain results of varying degrees of sophistication. But, for this application, the present
definition will suffice. The fraction of each fluid is obtained by minimizing the Helmholtz
free energy and is given by the expression

x = exp(−Ec/RT )/(1 + exp(−Ec/RT )). (5)

Ec = (a1 − a2)/V + E0 is the difference in cohesive energy (or chemical potential) of the
pure states and is volume dependent. AtEc = 0, E0 = (a2 − a1)/Vcl , whereVcl is referred
to here as the closure volume.
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The expression for the pressure is obtained from equation (4):

P = RT/(V − b) − [(1 − x)a1 + xa2]/V 2. (6)

It follows that sincex = x(V, T ) equation (6) can be written in a more general form:

P = RT/(V − b) − a(V, T )/V 2 (7)

which is formally equivalent to one employing state-dependent interatomic forces.

Figure 3. The cohesive energies of the two pure states are−a1/V and−a2/V + E0 and are
shown plotted versus volume. At volumes less than that of the hard sphere the energy becomes
infinite. Ec = (a1 − a2)/V + E0.

The parametersb, a1 and a2 and Vcl were adjusted to predict the same value of the
critical temperature and volume as the one-component model. In a rigorous treatment of
the problem the values ofb and Vcl would be composition dependent. However, given
our meagre understanding of the microscopic properties of expanded fluids any choices
for these parameters are likely to be arbitrary and incorrect. Therefore, since our primary
purpose is to provide new insight we have resorted to the computationally simplest and most
transparent approximations. For convenience we set the value of the excluded volume to be
b = 11.53 cm3 mol−1, for both states. This is the same value ofb as was used in section 2.1
and fixes the critical volume to the same experimental value. The volume (Vcl), at which
Ec = 0, was also set atb. SinceV is always greater thanb this choice ofVcl mainly adjusts
the value ofE0. The values ofa1, a2 and E0 so determined are, respectively, 5.0 l2 bar,
6.6 l2 bar and 0.14 eV. The calculated critical pressure is 1622 bar. The cohesive energies
of the two pure states are−a1/V and−a2/V + E0 and are shown plotted versus volume
in figure 3. At volumes less than that of the hard sphere the energy becomes infinite.

There is now enough experimental and theoretical evidence for the presence of dimers
and clusters in expanded metals to justify a multicomponent chemical reacting mixture as
the basis for a model fluid. For example, it is well known that the diatomic molecule is
the stable form of the alkali metals in the low-density gas phase [10]. Compressibility
measurements of alkali metal vapours by Ewinget al [11] have shown that there exist
substantial concentrations of dimers and tetramers at temperatures and pressures along
the saturation line approaching the critical point. Redmeret al [12], on the basis of
statistical mechanical calculations, have concluded that in the critical region the combined
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concentration of caesium dimers is of the order of 40%. Recently, measurements of the
longitudinal current correlation functions of liquid rubidium by Pilgrimet al [13] along
the liquid–vapour coexistence line were found to exhibit typical monatomic behaviour from
normal liquid density down to twice the critical density. At this density a sequence of well
defined peaks was observed which are characteristic of a harmonic oscillator. This has
been interpreted as evidence for the passage of the expanded Rb from a monatomic to a
molecular state.

However, more important than a knowledge of the precise species are the orders of
magnitude of their energies. In the case of caesium the energy for dissociation of the
dimer to free atoms is 0.43 eV. Total energy calculations [14] show that for densities near
critical the energy separating aT = 0 K lattice of diatomic molecules and a monatomic bcc
lattice has decreased to about 0.2 eV, and they have equal energies near twice the critical
density. Since these structures represent two extremes of bonding we can expect that over
this density range the dense fluid will retain these qualitative features and have a continuous
spectrum of species with energies in the thermal range.

In the case of Hg studies of bonding in clusters [15, 16] provide evidence for a
continuous energy spectrum in which small Hgn clusters (n < 13) are Van der Waals bound
and, after a transition region, sp hybridization leads to covalent bonding (306 n 6 70).
Betweenn = 95 andn = 100 a rapid decrease in the ionization potential is interpreted as the
onset of metallization. This suggests that the cohesive energy terma(V, T ), in equation (7),
may be written as an integral over an energy distribution function.

Figure 4. Calculated rectilinear densities of a Van der
Waals and a two-state model plotted as functions of the
reduced temperature.

Figure 5. The calculated fraction of state 2 versus the
reduced temperature.

2.3. Results of VdW calculations

Figure 4 shows the calculated rectilinear diameters obtained with the one-component and
two-component VdW models. The one-component model predicts that the mean density
of the liquid and its equilibrium vapour is a linear function of temperature in agreement
with the law of rectilinear diameters. The Van der Waals value for the diameter slope is
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A1 = 0.4 as seen in the figure. In contrast, the introduction of composition dependence in
the two-state model through a density-dependent cohesive energy leads to an asymmetry in
the coexisting phases and as a result the law of rectilinear behaviour is not obeyed.

In order to place the present results in perspective, with those of previous workers, we
recall that Widom and Rowlinson [2] speculated that a two-component model in which the
pair potential between like species is zero, while the interaction between unlike species is
strongly repulsive, would not obey the rectilinear law. More recently, Goldstein and co-
workers [5] argued that the singularities observed in Cs and Rb arose from a strong density
dependence of the screened ion–ion interactions. Clearly, the present model includes some
features of both references with the exception that it ignores the role of density fluctuations
by introducing a mean-field approximation. However, chemical intuition suggests that strong
attractive many-body forces between metal atoms, in the presence of critical fluctuations,
will favour clustering on some appropriate time-scale. Tarazonaet al [17] introduced this
crucial point into a lattice gas model of the alkali metals which took into account the strong
inhomogeneities due to clustering and atom formation. Although their model is a very
simple representation of a metal-atom fluid it does predict a nonlinear behaviour of the
rectilinear law.

Figure 6. Rectilinear densities of caesium and mercury, and the two-state model plotted as
functions of the reduced temperature.

The nonlinear behaviour predicted by the present model stems from the variation of
Ec (figure 3) with density which leads to values ofx that are increasing with increasing
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density. Figure 5 shows a plot ofx versus reduced temperature along the coexistence
curve. As a result, the negative contribution to the pressure from the largera2/V 2-term
grows continuously at the expense of the smallera1/V 2-term going from vapour to liquid.
This means that the pressure in the liquid is being lowered relative to that in the vapour.
In order for the coexisting phases to equate their pressures the fluids must compress to
higher densities. Since the compressibilities and thermal expansions of the two phases are
considerably different this leads to an asymmetry in the rectilinear diameter when compared
to the standard one-component model.

Figure 7. The modelEc versus the experimental optical
gap for mercury.

Figure 8. Experimental and calculated rectilinear
densities of mercury plotted as functions of the reduced
temperature: experimental data (solid line); the two-
state model (—· —); and the two-state model modified
to include the VdW liquid metal withρ > 9 g cm−3

(— — —) (see the text).

A comparison of the calculatedρd (in figure 6) with those from the measurements shows
a qualitative agreement for Cs. In the case of Hg the initial slope is similar to that for Cs
and the present model, but then the slope diverges sharply at values of1T/Tc greater than
0.01. The question as to why Hg is different can be at least partly addressed by comparing
the density dependence of the modelEc with the experimental optical gap,Ec(V ) being
the energy needed to thermally excite state 2. Figure 7 shows that the model energies
are much smaller than those of the experimentally determined optical gap, which closes at
9 g cm−3, the metallic density. This suggests that there are a continuous series of relatively
low energies of a thermal magnitude which determine thermodynamic properties for both
Cs and Hg near the critical density. Above the gap closure density, Hg becomes metallic.

Calculations were also made with the present model using the experimentally determined
optical gaps in place ofEc. But it was found that the resulting values ofx were too small
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to influence the thermodynamic properties in the critical regime. A similar conclusion
was reached by Nagelet al [18] based on a quantum statistical treatment of the metal–
nonmetal and liquid–vapour transitions in Hg. Their model considered neutral and excited
species of Hg atoms. They found that their calculated ionization potentials were in good
agreement with measured optical gaps. However, they also found that ‘up to the Mott
density, the composition is governed by the contribution of neutral atoms. The contribution
of the singly charged mercury ions is small, and the partial density of Hg2+ is negligible.
Therefore, mercury vapour can be considered as a nonmetallic dielectric system up to the
metal density. The reason for this behaviour is found from the ionization energy the value
of which is large compared with the temperature.’ In the next section we introduce a
modification of the present model for Hg.

3. The nonmetal–metal transition in Hg

The most significant experiments relevant to the transformation of Hg from a metallic to a
nonmetallic state are the electrical properties [8]. These show that from the highest density
ρ = 13.6 g cm−3 corresponding to the liquid at room temperature down to about 11 g cm−3

the properties of mercury can be described using the nearly-free-electron theory of metals
but, with further expansion, a rather gradual diminution of metallic properties occurs in the
density range between 11 and 9 g cm−3. For still smaller densities the metallic behaviour
as characterized by the Hall effect and electrical conductivity is no longer observed. On
the basis of these considerations the model of section 2.2 is only applicable to Hg in the
nonmetallic region,ρ < 9 g cm−3. Above 9 g cm−3 the model must be modified.

Let us assume that below 9 g cm−3 the two-state model remains applicable but that
above this density liquid Hg is a homogeneous metal which can be represented as a one-
component Van der Waals liquid (i.e. equations (1) and (2)). New values for the parameters
a andb were obtained by extrapolating the lower-temperature values ofρd to Tc to determine
a new critical densityρ ′

c and fitting theTc and ρ ′
c to a VdW model of the metal phase.

These parameters were found to bea = 6.8 l2 bar andb = 13.8 cm3 mol−1. In order to
ensure a continuous variation of the properties along the critical dome we assume that at
ρ = 9 g cm−3 andT = 1576 K Hg undergoes an insulator–metal transition. This requires
a matching of the pressure and Gibbs free energy of the two models. It is achieved by
adjusting thea-parameter to 7.27 l2 bar and adding a constant to the metal free energy to
establish a common reference energy.

The vapour–liquid equilibrium was recalculated at several temperatures for which the
liquid density isρ > 9 g cm−3. Figure 8 shows a plot ofρd versus1T/Tc calculated using
the two-state model and the modified version described in this section. The qualitative
agreement between experiment and theory is striking. The model correctly predicts the
reversal inρd with decreasing temperature that occurs forρ > 9 g cm−3. This is the
result of introducing a larger value ofb into the VdW equation which leads to stiffer liquid
isotherms. Since the vapour two-state model is unaffected by this change the liquid must
lower its density to satisfy the Gibbs equilibrium condition. Figure 9 shows the experimental
and calculated coexistence curves, and especially noteworthy is the good agreement of the
rectilinear lines. The matching leads to a small discontinuity that is smoothed. For densities
ρ > 9 g cm−3, the liquid densities calculated using the metal isotherm are lower than those
of the two-state model. The differences between the corresponding vapour densities are
minimal. At much lower temperatures the diameter regains a positive slope as is observed
for molecular fluids and alkali metals.
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Figure 9. Calculated and experimental (dots) mercury vapour–liquid coexistence curves
including rectilinear densities. The experimental data are from [6].

4. Conclusions

The combined experimental and theoretical data suggest that there are two processes taking
place in the critical region of Hg. One is a continuous change in composition characterized
by a relatively small activation energy of the same magnitude as the critical temperature,
leading to the asymmetry of the coexisting densities. This feature also appears to be present
in expanded Cs as is evident from the agreement for small1T/Tc for all three curves in
figure 6. These changes near the critical region might involve the formation of dimers,
trimers and clusters in their ground and low-lying excited states with larger units evolving
with increasing density. The second process in Hg is the closing of the optical gap leading
to metallization. Given the steepness of the optical gap curve we expect it to only influence
the critical-point thermodynamics near the gap closure density of 9 g cm−3 and above.

The results suggest that the following picture can be used for expanded Hg. At high
density (liquid-like near melting) the metallic bond network is dense and evenly distributed
over the whole sample. Clustering occurs as the density decreases, keeping many atoms
highly coordinated. However, the average coordination number decreases because the
number of atoms on the surface of the clusters increases. This explains, on an atomic
level, the steady decrease with decreasing density in the average coordination number at
almost constant nearest-neighbour distance [8].

The two-state model employed here is clearly an oversimplification. However, because
of its simplicity the VdW model has historically provided guidance for more quantitative
theories. The excellent agreement between calculations and experiment for Hg (in figure 9)
is due not only to the fortuitously appropriate nature of the VdW model for this element
but also to the added modifications. Our results indicate that a careful examination of the
nonlinearity of the rectilinear diameter has the potential for providing new insight into the
nature of the vapour–liquid critical point. Improved microscopic models need to include
species with energy differences comparable to the thermal energy.
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